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Abstract. The exact results for the super-radiant phase transition in the Dicke model are 
obtained by a variational method for the free energy used to study the cooperative 
Jahn-Teller effect in crystals. By transforming the Hamiltonian to a representation 
inherent in the variational method, we show that, in the limit of infinite coupling 
parameter, the leading term in the Hamiltonian is an Ising interaction between the z 
components of spin in the rotated pseudo-spin space. Each spin interacts equally with every 
other spin and this provides a physical insight into the origin of the mean-field behaviour of 
the Dicke model. 

T6e Dicke maser model of N two-level atoms coupled to a photon mode in the 
rotating-wave approximation has recently been an object of considerable interest with 
respect to a phase transition, called the super-radiant phase transition, which the system 
exhibits. The exact thermodynamics of this model was obtained by Hepp and Lieb 
(1973a). The essential feature of this second-order phase transition is that, when the 
Oupling parameter for interaction with the photon mode is less than a given value, 
there no phase transition, the thermodynamic properties being simply those of N 
No-interacting two-level atoms. When the coupling parameter is larger than a certain 
duethere is a phase transition characterized by the specific heat behaving for instance 
khat of aferromagnet in the molecular field approximation. For a given value of the 
@”Pk parameter, the specific heat rises as the temperature increases. However, 
before the maximum of the molecular field specific heat of a ferromagnet is reached, the 
Spedfic heat drops discontinuously at the super-radiant transition temperature and 
above this temperature the specific heat is that of a non-interacting two-level system. 

Wa% and Hioe (1973) calculated the exact thermodynamics using Glauber’s 
’ h ~ ~ t  states of the photon field as a basis. Using similar methods Hioe (1973) ex- 
tended the exact calculations to the particular case which does not use the rotating- 

Although they provided no justification for their method being 
%their results were proved to be rigorously correct by Hepp and Lieb (1973b). An 

method involving a ‘Bogoliubov trick’ was given by Vertogen and De Vries 

Amean-field variational method was used by Lee (1 973) to discuss the Jahn-Teller 
Co$erativephase transition (see for example Gehring and Gehring 1975) in a system of 
LpJekvel interacting with the phonon field of a crystal. The essential features Of 

‘lkTeller cooperative phase transition obtained show remarkable similarities to 
‘mRr-radiant phase transition described above. However, the case of interaction 

(1974). 

573 



574 BSLee 

arge wi& the phonon field is made considerably more complicated as there =e a 1 
m b e r  of phonon modes; and the different physics of the problem also requi.es the 
consideration of homogeneous strain. In the solution for this problem, the k + g  limit 

taken to include homogeneous strain effects. Hence it is not obviously 
whether our variational method would yield the exact results for the Dicke In 
this paper we show that a variational calculation using the same type of ~a~ 
nia as in the spin-phonon case gives the exact results for the Dicke model. We take the 
simple case of one photon mode without the rotating-wave approximation. Toprofi& 
Some physical insight into why the exact behaviour of the model resembles that of a 
weiss ferromagnet, we show by appropriately transforming the Hamiltonian &at inthe 
limit of the infinite coupling parameter, the leading term in the Hamiltonian is a 
spin-half Ising model with the spins interacting equally with each other. 

2. Variational calculation 

For easy comparison with the results given in Hioe (19731, we adopt the notation ofthat 
paper. The model Hamiltonian for N two-level atoms interacting with one photon 
mode is 

N N 

H=uta+E c S;+(2h /JN)  c (a+a+)S; 
i = l  i = l  

where a, ut are the annihilation and creation operarors for a photon of unit energy, E is 
the energy difference between the two levels, A is the coupling parameter and Sf and Si 
are the operators for spin-half. The counter-rotating terms atS’+aS- have been 
added to the expression for the rotating-wave approximation to give the interaction 
term in (2.1). 

The variational principle for the free energy can be stated as follows. If His  the 
Hamiltonian and H, a trial Hamiltonian containing a set of variational parameters, then 
the free energy F = - kT In Tr exp( - PH) satisfies the relation 

F C F, = Ft + ( H  - HJ, (2.2) 

where 

F, = - kT In Tr exp( - pH,) 
and 

(2.3) 

be 
A choice for Ht using mean-field arguments was made by Lee ( 1 9 7 3 9  to 

referred to as BSL). Let Ht, be the trial Hamiltonian for the spin system and Hp 
trial Hamiltonian for the photon system. The total trial Hamiltonian Ht is given by 

(2.5) 
Ht= H,+H,. 

Using arguments similar to that in BSL, we have 
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and 
Htp = ga + f (a + a’) (2.7) 

&re U, f and g are variational parameters. The rest of the calculations closely 
fonow the steps in BSL and we refer the reader to this paper for details. The 
diagonalizing canonical transformations for Hf,  are 

H:, = RH,R’ = (CL’+ v ~ ) ~ / ~  c s: 
i 

where the unitary operator R with R ‘R = RR = 1 is defined by 

i = l , 2 , .  . . , N  
RS;Rt=SS;cos 8-S;sin 8 

RS;R = S ;  sin 8 + S;  cos 8 

and 
P tan 8 =-, 
V 

sin 8 =+, 
P + U )  

cos 8 =+ 
P + V I ’  

(2.9) 

(2.10) 

$can be diagonalized by a c number shift of the photon operators a and u t  which is a 
~ o n i c a i  transformation generated by the unitary operator U (i.e. UtU= UUt = 1). 

Hence 

H:p = UH, ut = ga tu - ( f ’/g) 

UUUt = a - (f/g), 

(2.11) 

(2.12) 

where 

UUt Ut = at - (f/g). 
We also have 

H: = U M t R  Ut = H& + H&. 
Ushequations (2.3), (2.5), (2.8) and (2.11), we get 

Ft=-(flg)-kTln Tr exp(-pgu’a)-NkTln Tr e x p ( - P m S ‘ ) .  

Uhge¶uations (2.1), (2.3) and (2.12) we get 

(2.13) 

(2.14) 

U= Wf Ut 

= ata+T--(a f’ f +at)+€ cos 8 1 Sf-€ sin 8 S: 
g g  I I 

(2.17) 
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with H: given in equation (2.13). We have used the fact that the averages ( s ~ ~ ( s z y  
are independent of the index i and that (a)‘ = (at)’ = (S3‘  = 0. 

Note that (9)’ is given by 

(9)’ = -4 t a n h ( i j 3 m )  
and 

Tr uta exp(-pga’a) 
Tr exp( - pguta) . (uta)’= 

(2.18) 

(2.19) 

me upper bound for the free energy F, in equation (2.2) is, dropping the superscripbin 
(. .)’ for convenience 

F, = - kT In Tr exp( - Pgatu) -NkT In Tr exp( - p-9) +(1 -g)(atn)+- P 
g2 

(2.20) 

The minimization of F, with respect to g and f gives us the following solutions: 

g = l  (2.21) 
f = 2AJN(S”) sin 6 (2.22) 

noting that 6 is related to p and U in equation (2.10). Minimization of F, with respectto 
p and U, following the arguments in BSL gives the equations 

(2.23) 

~p + (4Afv/gJN) = 0. (2.24) 

The solutions of equations (2.23) and (2.24) using equations (2.21) and (2.22) are 

U = €  (2.25) 

p=O (2.26) 
or 

J(p2+e2) = -8A2(SL) .  (2.27) 

Equation (2.27) can also be written as 

p = * (64A4(S’)2- e2)l”. 

For real solutions of p the following condition must be satisfied: 
64A4(S‘)‘> E’. (2.29) 

The maximum value of ( S z ) 2  = $. For a given E ,  to satisfy condition (2.29)woddrqm 
for the maximum value of (S‘)2,  the smallest value of A as 4h2 = E. As (S‘)2decTeaSeSin 
value we would require a larger value of A to satisfy (2.29). Hence We 
condition (2.29) as 

(2.28) 

can wn’te 

(2.30) 
4A2 E 

which includes all values of A satisfying (2.29) for a given E .  
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Men 4~~ s E, the only solution for p is given by equation (2.26), i.e. p, = 0. With 
DsQ given by equation (2.25) we can verify by substitution in equation (2.20) that 

(2.3 1) 

eg the free e n e r a  of the single photon mode of O(l/N). This is the unper- 

men 4 h 2 3  E the equation which determines (S')  is given by substituting equation 
(2.27) into equation (2.18). We get 

(S") =$ tanh(4pA2(S')) (2.32) 

aoeqution for (S")  which resembles that for the Weiss ferromagnet. As T increases 
from T=O, (S') decreases from the maximum value f until it reaches a value at 
temperature T, where condition (2.29) becomes an equality. This defines the critical 
@tforthe super-radiant phase transition. Since at T =  T,, (S") = s/8h2 we get using 
quation (2.32), the equation which determines pc= l/kT, as 

Fv/N = - kT ln(2 cosh $ E )  

&tion and there is no phase transition. 

E -- tanh(fp,E). 
4A2- 

(2.33) 

Above T, the condition (2.27) is violated and we have the unperturbed solution given by 
equation (2.30). The free energy E, in (2.20) becomes, using (2.10), (2.21), (2.22), 
(2.25) and (2.27) 

E* F. = -kT ln[2 cosh(4pA2(S'))] + 4A 2(Sr)2 -- 
N 16A '. (2.34) 

Tocompare our results with that given in Hioe (1973) we note that a = 2A as defined in 
thatpaper. Also, we identify U in that paper with ( S " )  here. We note that equations 
(2.30),(2.31), (2.32), (2.33) and (2.34) agree with equations (2% (26), (27) and (28) of 
6is paper. Hence our variational calculation gives us the exact thermodynamics of the 
Dicke model. Strictly we have not proved that our method gives the exact thermo- 
dynamics but it is nevertheless surprising that the variational method based on mean- 
kldquments for the choice of the trial Hamiltonian does give us the exact answer. 
wenote that in our calculation the order parameter (S') appearing in equation (2.32) 
ha simple physical meaning. Since the effective temperature-dependent splitting of 
the two levels is given by ( p 2 + ~ 2 ) 1 / 2 ,  equation (2.27) shows that the temperature- 
dependent level separation is directly proportional to (S") .  The order parameter U 

in Hioe (1973) does not appear to have a physical meaning which can be 
deduced easily from his calculations. 
we can also readily verify that if we apply our method using the ansatz given in 

(2.5), (2.6) and (2.7) to the model Hamiltonian with the rotating-wave 
~ * o ~ a t i o n  as originally discussed by Hepp and Lieb (1973a) and Wang and Hioe 

get the same phase transition behaviour. 
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systems with a long range interaction except that their mean field appears to beoff 
diagonal. In our ansatz for Ht, in equation (2.6) we are actually considekg 
field the z direction of the rotated pseudo-spin space and the diagonalization of Hb 
diagonalizes the off-diagonal mean field acting on the S" components. ~~~d~~ 
spin-phonon problems (Gehring and Gehring 1975) we expect that the h t e w n o f  
the independent spins with the photon mode will induce an effective spin+phbkrac. 
tion of a long range nature and this will be responsible for producing the moledar. 
field-we behaviour. In this section we demonstrate, by making a transformationoftbe 
Hamiltonian in equation (2.1) directly related to the variational method, that in the 
limit A +CO the leading term in the Hamiltonian is an Ising term the spb 
interacting equally with each other. As is well known (see for example Stanley 1971) 
the exact solution of this king model with an infinite range interaction is the mol-. 
field solution. 

First, we note from equations (2.32) and (2.33) that as A increases for a fixed valueof 
E, the bansition temperature T, increases and (S") approaches the behaviour of awek 
ferromagnet more, being closer to zero at T,. 

It was shown in BSL that in the limit T+ 0, our variational calculation for the free 
energy reduces to the foilowing variational principle for the ground state energy& 

(3.1) EoS E, = (OlURHR'U'lO) = (OlH'lO) 

with R, U and H' given in equations (2.9), (2.12) and (2.15) respectively. The 
normalized vacuum state IO) is defined by a10) = 0, Sflo) = -+IO) for all i and(0)0)=1. 
From equation (2.15) we get 

2AfN 
JN sin 8 f' 

8' 
E,=---"E COS e+- 

noting that (OIa'a 10) = (01s' 10) = (Ol( a + a ')IO) = 0. Minimization of E, with respect to B 
and f/g gives 

and 

O = O  i or 

(3.31 

(3.41 

COS e = e/4A2 J 
We assume that 4A' 3 E so that the second solution in (3.4) is taken. Substituting* 

quantities in (3.3) and (3.4) into equation (2.15) we get 
(3.5) H' = HI + Hz 

where 
(3.6) 

HI = Q ' a + 4A2 I Sf +%( 1 --&) ''' c i (a + +;) 
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comes very small and can be neglected as a first approximation Then we get WHZ be 
H' = .HI f O( l/A). (3.8) 

$N all the z components of spin in Hl commute with each other we can e& HI exactly to give 
N N  

sfsf (3.9) 

(3.10) 

(3.1 1) 

CoJsitentwithneglecting terms of O ( l / h )  in equation (3.8) we must also neglect terms 
o~o(I/A') in (3.9). This gives, 

(3.12) 

ktennswith i = j in (3.12) merely give constant terms since ( S n Z  =a. Hence we have 
a leading term which is an Ising interaction, each spin interacting equally with each 
other. This has an exact solution (Stanley 1971, p 91) given by 

y = A 6 p  t a n h ( 6 h y )  (3.13) 

hreyisanorderparameter. If we let y = 2 h L p ( S ' ) ,  thenequation(3.13) becomes 

(S') =$ tanh(4pA2(§")) (3.14) 

achagreeswith equation (2.32) except that in this limit h +CO, condition (2.29) is not 
necessary. 

The exact solution of the Dicke model obtained by a mean-field-type variational 
adation for the free energy is, apart from being another derivation of the exact 
hOdP~cs, an important test of the similar variational method that was applied to 
aspi..phonon problem with a similar structure for the Hamiltonian where the problem 
Bmore c"licated because of the interaction of the spins with an infinite number of 
p b o n o n " h  and the presence of phase factors depending on the site of the two-level ton. we have no direct proof of the fact that the variational method here is 
@.act at Present, we hope to investigate this question in future. We believe the 
bansformation of the Hamiltonian inherent in the variational method, to display a * which is an Ising interaction between the z components of spin in the 
wpseudO-spin space where each spin interacts equally with each other in the limit 2 Provides physical insight into the fact that long range effective interactions 

eenthesPinS, induced by their interaction with the photon field, are responsible for 
behaviour found for the super-radiant phase transition. 
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