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Abstract. The exact results for the super-radiant phase transition in the Dicke model are
obtained by a variational method for the free energy used to study the cooperative
Jahn-Teller effect in crystals. By transforming the Hamiltonian to a representation
inherent in the variationa! method, we show that, in the limit of infinite coupling
parameter, the leading term in the Hamiltonian is an Ising interaction between the z
components of spin in the rotated pseudo-spin space. Each spiri interacts equaily with every
other spiri and this provides a physical insight into the origin of the mean-field behaviour of
the Dicke model.

1. Introduction

The Dicke maser model of N two-level atoms coupled to a photon mode in the
ntating-wave approximation has recently been an object of considerable interest with
respect to a phase transition, called the super-radiant phase transition, which the system
exhibits, The exact thermodynamics of this model was obtained by Hepp and Lieb
{1973a). The essential feature of this second-order phase transition is that, when the
oupling parameter for interaction with the photon mode is less than a given value,
tere is no phase transition, the thermodynamic properties being simply those of N
lor-interacting two-level atoms. When the coupling parameter is larger than a certain
vilue there is a phase transition characterized by the specific heat behaving for instance
tike th.at of aferromagnet in the molecular field approximation. For a given value of the
wupling parameter, the specific heat rises as the temperature increases. However,
befo.re the maximum of the molecular field specific heat of a ferromagnet is reached, the
Secific l}eat drops discontinuously at the super-radiant transition temperature and
hove this temperature the specific heat is that of a non-interacting two-level system.
Wang and Hioe (1973) calculated the exact thermodynamics using Glauber’s
:’fgfeﬂt states of the photon field as a basis. Using similar methods Hioe (1973) ex-
wav:d the exact calculations to the particular case which does not use the rotating-
4pproximation. Although they provided no justification for their method being
mﬁ,th.eu results were proved to be rigorously correct by Hepp and Lieb (1973b). An
(i 974;“1% method involving a ‘Bogoliubov trick’ was given by Vertogen and De Vries
Amefln-ﬁeld variational method was used by Lee (1973) to discuss the Jahn-Teller
T2live phase transition (see for example Gehring and Gehring 1975) in a system of
Vel ions interacting with the phonon field of a crystal. The essential features of
o ellfer cooperative phase transition obtained show remarkable similarities to
Der-radiant phase transition described above. However, the case of interaction
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with the phonon field is made considerably more complicated as there are al
number of phonon modes; and the different physics of the problem-alsp Tequires the
consideration of homogeneous strain. In the solution for this problem, the k Tirmit
was taken to include homogeneous strain effects. Hence it is not obviously gleg
whether our variational method would yield the exact results for the Dicke mode], In
this paper we show that-a variational calculation using the same type of trial Hamil,.
nian as in the spin-phonon case gives the exact results for the Dicke model. We take the
simple case of one photon mode without the rotating-wave approximation. To provide
some physical insight into why the exact behaviour of the model resembles that of 5
Weiss ferromagnet, we show by appropriately transforming the Hamiltonian thatin the
limit of the infinite coupling parameter, the leading term in the Hamiltonian is 4
spin-half Ising model with the spins interacting equally with each other.

. 2. Variational calculation

For easy comparison with the results given in Hioe (1973), we adopt the notation of that
paper. The model Hamiltonian for N two-level atoms interacting with one photon

"~ mode is
. N N
H=a'a+e Y S:+QA/NN) Y (a+a")§F Q.
i=1 i=1

where a, a” are the annihilation and creation operators for a photon of unit energy, e is
the energy difference between the two levels, A is the coupling parameter and S} and §;
are the operators for spin-half. The counter-rotating terms a'S™+aS™ have been
added to the expression for the rotating-wave approximation to give the interaction
term in (2.1).

The variational principle for the free energy can be stated as follows. If H is the
Hamiltonian and H, a trial Hamiltonian containing a set of variational parameters, then
the free energy F = ~ kT In Tr exp(— BH) satisfies the relation

F<F,=F+(H-H), 22
where
F,=—kTInTrexp(—BH,) @3
and
Tr(H ~ H) exp(~ BH) (24)

H - = o~ )

A choice for H, using mean-field arguments was made by Lee (1973’Hw be
referred to as BSL). Let H,, be the trial Hamiltonian for the spin system and Fp

trial Hamiltonian for the photon system. The total trial Hamiltonian H, is given b
H.=H.+H,, 3
Using arguments similar to that in BSL, we have
29

HE=UZSf+;LZSf
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and
H,=ga'a+fla+a") 2.7)

ahere i, v, f and g are variational parameters. The rest of the calculations closely

sollow the steps in BSL and we refer the reader to this paper for details. The
giagonalizing canonical transformations for H,; are

H,=RHR'=(u*+v")"* L §} (2.8)
ahere the unitary operator R with R'R = RR" =1 is defined by

RS?R"=S7cos 6—S¥sin 6
t - }i=172)'~-9N (2.9)

RSIR'=8sin 6+ S cos b

and

. P 12 - v
tane—v, sin 6 m, ‘COSG W 2.10)

H,,canbe diagonalized by a ¢ number shift of the photon operators a and a whichis a
anonical transformation generated by the unitary operator U (i.e. U'U=UU'=1).
Hence

H,=UH,U'=ga'a—(f*/g) (.11)
where ‘

UaU'=a—(f/g),  Ua'U'=a"-(f/g). (2.12)
We also have

H;=URH.R'U'=H, +Hj,. (2.13)
Using equations (2.3), (2.5), (2.8) and (2.11), we get
F=~(f/g)~kT In Tr exp(—Bga’ a) — NkT In Tr exp(—Bv 2+ v°S7). (2.14)
Using equations (2.1), (2.3) and (2.12) we get
H=URHRy?

v P f :
=q a+?—§(a+af)+e cos 9% Si—esin gy S;
21 . 2z o 2f )
+ s s> g g
m};((a+a )Sisin@+(a+a')S7cos @ gS, sin 8 gS, cos 6).
2.15
Hence (2.15)
— NI o fz I\’ 4'\f Z\I '
(H).=(H'Y =(a"a)’ +’5+ Ne cos 6(S*) ——~/N(S*' sin 6 (2.16)
g g

Where

(- _>,=TI' - - - exp(—BH}) (2.17)

Tr exp(—BH,)
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with H, given in equation (2.13). We have used the fact that the averages (§7' = 57y
are independent of the index i and that (@)’ =(a")’ =(S3)'=0. i
Note that (S*)' is given by

(§7)' = —3 tanhGBV > +07) e
and
Tra'a exp(—Bga’a)
Tr exp(—Bga’a)

The upper bound for the free energy F, in equation (2.2) is, dropping the su perscriptsia
(- - -) for convenience

(a'ay= 219

2

F,=—kTInTrexp(—Bga’a)—NkT In Tr exp(— Bv > +v28)+(1 —g)(a*a)+f~2
g

4A
+ N(S*)(e cos 6—~/p2+v2)——g—f~/N(S’)sin 6. (220
The minimization of F, with respect to g and f gives us the following solutions:
g=1 20
f=2AYN{§%)sin 6 Q2

noting that 6 is related to « and v in equation (2.10). Minimization of F, with respectto
# and v, following the arguments in BSL gives the equations

T R N T =

e +(4Afv/gVN)=0. (224)
The solutions of equations (2.23) and (2.24) using equations (2.21) and (2.22) are

v=—e 229

=0 (2.26)
or

\/(p,2+€2)=—8A2(SZ). Q)
Equation (2.27) can also be written as

= £ (641%(S7Y2 — )2, .28
For real solutions of u the following condition must be satisfied:

64AS™) 2= €2, )
The maximum value of (S*)*> =}. For a given ¢, to satisfy condition (2.29) v:ould requi{;
for the maximum value of {$%)?, the smallest value of A as 412 =¢. As(S) decreasts

value we would require a larger value of A to satisfy (2.29). Hence we 2 o
condition (2.29) as
: 30

4r’=¢

which includes all values of A satisfying (2.29) for a given e.
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When 4)x*<e¢, the only solution for u is given by equation (2.26), i.e. 4 =0. With
p=e given by equation (2.25) we can verify by substitution in equation (2.20) that

F,/N=—kT In(2 cosh 3Be) (2.31)

ing the free energy of the single photon mode of O(1/N). This is the unper-
solution and there is no phase transition. -
"When 4A% = € the equation which determines (S°) is given by substituting equation
(2.27) into equation (2.18). We get

(5*y=4 tanh(4BA*(S")) (2.32)

aequation for (§7) which resembles that for the Weiss ferromagnet. As T increases
fom T=0, (S°) decreases from the maximum value 3 until it reaches a value at
mperature T, where condition (2.29) becomes an equality. This defines the critical

int for the super-radiant phase transition. Since at T= T, {(§%) = £/8A” we get using
equation (2.32), the equation which determines B.=1/kT, as

€
ﬁ—z=tanh(%3ce). ~ | (2.33)
Above T, the condition (2.27) is violated and we have the unperturbed solution givén by
equation (2.30). The free energy F, in (2.20) becores, using (2.10), (2.21), (2.22),
{225)and (2.27) . -

F,

2
~=—KTn[2 cosh(4BAXS )] +4A*(S™) ~ £

160

(2.34)

Tocompare our results with that given in Hioe (1973) we note that a = 2A as defined in
that paper. Also, we identify o in that paper with (S°) here. We note that equations
(230),(2.31), (2.32), (2.33) and (2.34) agree with equations (25), (26), (27) and (28) of
lispaper. Hence our variational calculation gives us the exact thermodynamics of the
Dicke model. Strictly we have not proved that our method gives the exact thermo-
dymamics but it is nevertheless surprising that the variational method based on mean-
feld arguments for the choice of the trial Hamiltonian does give us the exact answer.

We ote that in our calculation the order parameter (S°) appearing in equation (2.32)
besa simple physical meaning. Since the effective temperature-dependent splitting of
tie two levels is given by (u>+€%)'2, equation (2.27) shows that the temperature-
demnd;m level separation is directly proportional to {$*). The order parameter o
®pearing in Hioe (1973) does not appear to have a physical meaning which can be

Uced easily from his calculations.

W? @an also readily verify that if we apply our method using the ansatz given in
Hations (_2-5), (2.6) and (2.7) to the model Hamiltonian with the rotating-wave
gg;g;ﬂmatlon as originally discussed by Hepp and Lieb (1973a) and Wang and Hioe

We get the same phase transition behaviour.

* The sing modef limit

Thet, '
-;C;hat the exact thermodynamics of the Dicke Hamiltonian leads to molecular-
Lich (197§OIUthns suggests that long range forces exist in the system. Infact Hepp and
2) pointed out that their results are typical of the van der Waals limits in
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systems with a long range interaction except that their mean field appears o be
diagonal. In our ansatz for Hy in equation (2.6) we are actually considering a m, .
field in the z direction of the rotated pseudo-spin space and the diagonalization of?]n
diagonalizes the off-diagonal mean field acting on the S* components. By aﬂalogywit;
spin-phonon problems (Gehring and Gehring 1975) we expect that the interaction of
the independent spins with the photon mode will induce an effective spin—spin interae.
tion of a long range nature and this will be responsible for producing the molecyay.
field-type behaviour. In this section we demonstrate, by making a transformation of the
Hamiltonian in equation (2.1) directly related to the variational method, that in the
limit A > the leading term in the Hamiltonian is an Ising term with the spins
interacting equally with each other. As is well known (see for example Stanley 1971)
_the exact solution of this Ising model with an infinite range interaction is the molecular.
field solution. ’

First, we note from equations (2.32) and (2.33) that as A increases for a fixed value of
¢, the transition temperature T, increases and (S*) approaches the behaviour of a Weiss
ferromagnet more, being closer to zero at T.

" It was shown in BSL that in the limit 7~ 0, our variational calculation for the free
energy reduces to the following variational principle for the ground state energy E,,

Eo<E,=(0JURHR'U"|0) = (0| H'|0) 33
with R, U and H’ given in equations (2.9), (2.12) and (2.15) respectively. The

normalized vacuum state |0) is defined by a|0)=0, $]0) = —3|0) for all i and (00)=1.
From equation (2.15) we get

2
2AfN .
EF%—%Ne cos 8 +:g—\/f7 sin @ (32)

noting that (0]aa|0) = (0]S*|0) = (0|(a + a')|0) = 0. Minimization of E, withrespecttos
and f/g gives

2 \1/2
£= _)‘\/N(l_l_;\_z) (33
and
6=0
or (34
~cos 8 =¢/4A>

We assume that 41> = € so that the second solution in (3.4) is taken. Substitutingthe
quantities in (3.3) and (3.4) into equation (2.15) we get

H'=H,+H, (3
where
Hi=a'a+aV’y s,%+721%(1 —1—5\—4)1/2 LG +a)(Si+Y 68
€ KX}
Hz-‘-mﬁi‘, (a+ahSz ;
. large, ¥

- Note that H, is of O(1/A) whereas H; is O(A%) and O()). Let us take A very
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hecomes very small and can beneglected as a first approximation. Then we get
H'=H;+0(1/}). (3.8)

Now since all the z components of spin in H; commute with each other we can
@gonahle H, exactly to give

et

2 4A2 2 N N
H=UHUi=d'a+ 53 si-2(1-m5=) L 2 818]  (39)

:{;\_2-1 N 16/\.4 i=1j=1
where
UyaU}=a+fi, Ua'Uj=a'+f, (3.10)
and
- 2)\( __sz_)”z !
fi= =T\l 1gn?) 2Si+D (3.11)

Coxsistent with neglecting terms of O(1/A) in equation (3.8) we must also neglect terms
d0(1/A9) in (3.9). This gives, ' :
. 4PN N
Hi=a'a——= Y Y SiS;. (3.12)
N i=1j=1 .

Theterms with i = j in (3.12) merely give constant terms since (S7)> = 4. Hence we have
1leading term which is an Ising interaction, each spin interacting equally with each
other. This has an exact solution (Stanley 1971, p 91) given by :

y=Av2B tanh(v2BAy) (3.13)
where y is an order parameter. If welety = 2)\x/—2—[§(S *), then equation (3.13) becomes
(§*y=1tanh(4BA*(S*)) (3.14)

which agrees with equation (2.32) except that in this limit A - c0, condition (2.29) is not
Becessary,

4, Conclusion

The exact solution of the Dicke model obtained by a mean-field-type variational
@enlation for the free energy is, apart from being another derivation of the exact
i Odﬁ’“mniCS, an impo‘rtant test of the similar variational'metl"nod that was applied to
Eml:: onon problem with a similar structure for the H:.inultqnxan vyherg the problem
n complicated because of the interaction of the spins with an infinite number of
; “tomodes and the presence of phase factors depending on the site of the two-level
o QA::ho‘lgh we have no direct proof of the_ fact thal't th‘e‘ variational methosi here is
\ present, we hope to investigate this question in future. We believe the
. mation of the Hamiltonian inherent in the variational method, to display a
term which is an Ising interaction between the z components of spin in the
7 ‘*oo, g:zu%o-spin space where each spin interacts equally with each other in the limit
betweey ;" cs pl}ysmal 1ns1ght. into the ‘fact Fhat long range effective interactions
,lheman.ﬁe:gm& lﬂ(%uced by their interaction with the photon field, are responsible for
behaviour found for the super-radiant phase transition.
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